Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR.

نویسندگان

  • Ming Tang
  • Alan J Waring
  • Mei Hong
چکیده

The site-specific motion of Arg residues in a membrane-bound disulfide-linked antimicrobial peptide, protegrin-1 (PG-1), was investigated by using magic-angle-spinning solid-state NMR spectroscopy to better understand the membrane insertion and lipid interaction of this cationic membrane-disruptive peptide. The C-H and N-H dipolar couplings and 13C chemical shift anisotropies were measured in the anionic POPE/POPG membrane, and were found to be reduced from the rigid-limit values by varying extents; this indicates the presence of segmental motion. An Arg residue at the beta-turn region of the peptide showed much weaker spin interactions, which indicates larger amplitudes of motion than an Arg residue in the beta-strand region of the peptide. This is consistent with the exposure of the beta turn to the membrane surface and the immersion of the beta strand in the hydrophobic middle of the membrane, and supports the previously proposed oligomerization of the peptide into beta barrels in the anionic membrane. The 13C T2 and 1H T(1rho) relaxation times indicate that the beta-turn backbone undergoes large-amplitude intermediate-timescale motion in the fluid phase of the membrane; this causes significant line broadening and loss of spectral intensity. This study illustrates the strong correlation between the dynamics and structure of membrane proteins, and the capability of solid-state NMR spectroscopy to provide detailed information on site-specific dynamics in complex membrane-protein assemblies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy.

The membrane-bound structure, lipid interaction, and dynamics of the arginine-rich beta-hairpin antimicrobial peptide PG-1 as studied by solid-state NMR are highlighted here. A variety of solid-state NMR techniques, including paramagnetic relaxation enhancement, (1)H and (19)F spin diffusion, dipolar recoupling distance experiments, and 2D anisotropic-isotropic correlation experiments, are used...

متن کامل

Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR.

Solid-state NMR spectroscopy is used to determine the membrane-bound topological structure of a cationic beta-hairpin antimicrobial peptide in which the number of Arg residues has been halved. The parent peptide, PG-1, was previously found to form transmembrane beta-barrels in anionic membranes where the Arg residues complex with the lipid phosphate groups to cause toroidal pore defects in the ...

متن کامل

Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.

The insertion of charged amino acid residues into the hydrophobic part of lipid bilayers is energetically unfavorable yet found in many cationic membrane peptides and protein domains. To understand the mechanism of this translocation, we measured the (13)C-(31)P distances for an Arg-rich beta-hairpin antimicrobial peptide, PG-1, in the lipid membrane using solid-state NMR. Four residues, includ...

متن کامل

Membrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: a 31P and 1H NMR study.

The membrane interaction and solution conformation of two mutants of the beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), are investigated to understand the structural determinants of antimicrobial potency. One mutant, [A(6,8,13,15)] PG-1, does not have the two disulfide bonds in wild-type PG-1, while the other, [Delta(4,18) G10] PG-1, has only half the number of cationic residues. 31P s...

متن کامل

Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR.

The protein transduction domain of HIV-1 TAT, TAT(48-60), is an efficient cell-penetrating peptide (CPP) that diffuses across the lipid membranes of cells despite eight cationic Arg and Lys residues. To understand its mechanism of membrane translocation against the free energy barrier, we have conducted solid-state NMR experiments to determine the site-specific conformation, dynamics, and lipid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chembiochem : a European journal of chemical biology

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2008